Refrac Candidate Selection, Execution and Performance Evaluation for Conventional and Unconventional Reservoirs




Who should attend:

Engineers, managers, and geoscientists who want to maximize the probability of success and minimize surprises from a refrac program in unconventional or conventional reservoirs.   Particular emphasis is placed on managing primary (parent) - infill (child) frac interactions within a drilling spacing unit to avoid EUR losses and to maximize the number of wellbores within the DSU.  Refracs have been shown to be the most cost effective method to maximize recovery within a DSU in both the primary and infill wells. “Best Practices” are presented to maximize productivity at the minimum cost possible from the primary and infill wells .


Course Description:

Participants will learn a methodology that first accurately characterizes the reservoir properties to evaluate the effectiveness of the original hydraulic fracture treatment with production data. This enables a determination of the cause of poor production performance; as a function of a poorly designed or executed completion, or poor quality reservoir rock.  If the remaining volumetric reserves are economic techniques are presented to effectively access these reserves with refracturing treatment(s).  “Best practices” presented include recovery factor analysis, perforation cluster optimization using Extreme Limited Entry constrained by critical rate,  and the use of expandable tubulars to minimize refrac costs.  Innovative techniques such as single perforation hole clusters are discussed to more accurately gauge cluster efficiency.  Treatments are designed to both maximize productivity from “new rock” and recharge the existing fracture system to prevent infill well EUR losses. 


Learning Outcomes:

1.      What makes a good refrac candidate in conventional and unconventional        reservoirs?

2.    Is the poor performance of the candidate due to the initial frac or the reservoir?

3.      What will a refracced well produce

4.      What are the “best practices” for refracs in conventional and unconventional reservoirs?

5.      What information and analyses are required to answer these questions?

Course Discussion:

In addition to identifying the best refrac candidates the mechanical aspects of refrac execution are emphasized to ensure that the maximum stimulated volume possible is obtained. The methodology utilizes basic openhole wireline logs, core data, pre-frac pump-in test data, and production data to predict production performance as a function of frac performance. This information can then be used to determine what refrac practices are resulting in the highest recovery factors. Diagnostic techniques such as production logs, microseismic, tracers, decline curve analysis, and post frac production analysis are discussed to supplement the performance analysis.

For initial completions the methodology can provide an estimate of future hydrocarbon recovery with different landing zone options to maximize results from each lateral and determine the optimum number of stacked laterals for an area. For refracture treatments a key deliverable is candidate selection and the ability to “forward model” refrac results prior to the treatment. Case studies are presented from previous “best practices” studies in both oil and gas reservoirs to reinforce the concepts.

The course includes a comprehensive review of “best practices” from previous evaluations of over 4000 producing zones in past field studies to guide the optimization process for future or existing well completions. Participants will receive a comprehensive log analysis spreadsheet that includes calculation of all inputs required to develop calibrated permeability and stress profiles in ASCII format to load directly into a 3D hydraulic fracture simulator. Additional spreadsheet routines are provided to estimate volumetric reserves from petrophysical data, estimated ultimate recovery from production decline data, and economic analysis of expected production declines.

Upon completion participants will be well equipped to utilize service company and in-house log analysis resource to develop well performance models specific to their reservoirs. Class participants are encouraged to provide local examples for discussion of model implementation and possible “best practices” for their areas of activity.


Course qualifies for 1.6 CEU units


Instructor Background


Robert Barba


Bob spent 10 years with Schlumberger as an openhole field engineer, sales engineer, and product development manager. While at Schlumberger he was the North American product champion for the FracHite and Quantifrac products that integrated wireline, testing, and pumping inputs to optimize hydraulic fracture treatments. He was also the product development manager for the QLA program that made the field log analysis “Cyberlook” program available to customers on personal computers. Since then he has spent 18 years consulting to over 300 companies on petrophysics and completion optimization. He served as a SPE Distinguished Lecturer on integrating petrophysics with the hydraulic fracture treatment optimization process. He has focused on the integration of petrophysics with completion designs in a variety of reservoirs in North America, conducting numerous field studies for operators evaluating the effective frac length in over 4000 wells and providing "best practices" recommendations based on the study results (SPE 90483). He has been responsible for the petrophysical analysis of 40 major fields worldwide as part of integrated reservoir characterization studies identifying remaining mobile hydrocarbons. He has authored 36 technical papers on the integration of petrophysics with completion designs, horizontal wells, and reservoir characterization projects.   Recent major consulting projects have involved optimizing completion practices in horizontal organic shale wells for major operators in the Marcellus shale, Utica, Cline, Eagle Ford, Bakken, Wolfberry, and Wolfcamp His latest paper showed a significant improvement in horizontal shale recovery factors can be obtained by ensuring the wellbore, proppant, and net pay are connected using “best practices” presented in the school. Bob has a BS from the US Naval Academy and MBA from the University of Florida. He is also a member of the SPE, SPWLA, and the AAPG.

Sign up Today - Registration & Payment

Practical Interpretation of Open Hole Logs

Will be taught virtually (Live Online) by Bob Barba in 6 Half-Day Sessions, 8 AM – 12 PM CT, Feb. 01-03 & 08-10 via Subsurface Consultants & Associates, LLC (SCA). Register:

In house sessions available




Sign Up Today

Registration and Payment


Print Print | Sitemap
© Integrated Energy Services Inc.